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Machine learning (ML), which converts complex
data into algorithms, challenges the traditional

epidemiologic approach of evidence-based medicine
(EBM). Here I outline the differences, strengths, and
limitations of these 2 approaches and suggest areas of
reconciliation.

A HISTORICAL CONTEXT
Beginning in the 1970s, scientists extolled the virtues

of EBM's hypothesis-driven, protocolized experiments in-
volving well-defined populations and preselected expo-
sure and outcome variables. Inferences were made using
traditional biostatistics. In the early 1990s, ML emerged,
whereby advanced computing programs (machines) pro-
cessed huge data sets (big data) from many sources and
discerned patterns among multiple unselected variables.
Such patterns were undiscoverable using traditional bio-
statistics (1) and were used to iteratively refine (learn) lay-
ered mathematical models (algorithms). The Table lists
key differences between EBM and ML.

PROMISE OF ML OVER EBM
Machine learning promises to assist clinicians in in-

tegrating ever-increasing loads of medical knowledge
and patient data into routine care. Data-driven ML aims
to identify similarities and differences in patient pheno-
types and genomes, standardize diagnostic approaches,
improve existing therapies, identify new drug targets, op-
timize prediction rules, avert clinical errors due to human
cognitive bias and fatigue, and deliver precision medi-
cine. Evidence-based medicine shares these goals, but
ML aims to achieve them more quickly. Because it uses
data sets that are already available, ML has fewer con-
straints related to logistics, ethics, study design, and sam-
ple size than EBM (in particular, randomized controlled
trials).

Recent studies show that ML algorithms can assist
clinicians in diagnosis, risk prediction, and assessment
of disease severity across many medical and surgical
applications (1, 2). Algorithms can match or exceed ex-
perienced clinicians in correctly diagnosing diabetic
retinopathy on fundal photographs, skin cancers on
dermatoscopic images, and lymph node metastases on
histologic examination of biopsy specimens. Using ra-
diologic imaging data, ML affords greater anatomical
precision in administering radiotherapy for cancer and
undertaking particular types of neurosurgery. Algorithms
can also use clinical and laboratory data to predict surgi-
cal site infections more accurately than conventional re-
gression models. In hospital practice, applying ML to op-
erational data can improve efficiencies in patient triaging
and appointment scheduling. Machine learning can use
pharmacologic data to calculate more appropriate dos-

ing regimens than current algorithms. In all of these cases,
ML outperforms EBM and may have wider reach. Algo-
rithms can operate at the point of care using software em-
bedded in investigational devices, electronic health re-
cords, or mobile device applications.

LIMITATIONS OF ML VERSUS EBM
Unlike EBM, ML algorithms often rely on routinely

collected data that can be incomplete, inaccurate, sub-
ject to systematic bias, poorly described, or inaccessi-
ble, and this can lead to erroneous predictions. Seek-
ing greater precision and external validity by using
more rather than better data is problematic. Of note, ML
cannot account for the frequent disagreement among cli-
nicians about clinical features, diagnostic findings, and
outcome assessments. Diverse data stored in different re-
positories require automated abstraction and resource-
intense manual curation by experts, and unstructured
notes in electronic health records are inaccessible to
algorithms without layers of preprocessing (3). Natural
language processing systems must expand beyond
simple word recognition to incorporate semantics and
syntax into their dictionaries and analyses. They must
also overcome the data loss and distortion inherent in
converting history and examination into a few textual
notes.

Algorithms cannot recognize whether patterns or
associations found in the absence of an underpinning
theoretical construct are true, spurious, or affected by
bias. Unlike EBM, ML has no system for rating risk of
bias or quality of evidence. It cannot distinguish unwar-
ranted from warranted practice variation and is often
confounded by temporal variations in variables or se-
quences of clinical decisions. It may perpetuate previ-
ous errors in clinician decision making if derived from
coded data reflecting prior decisions. Omission of con-
textual data (such as local admission policies, patient
socioeconomic status, and physician preferences) may
yield technically valid but misleading models (4). In
contrast, EBM incorporates situational awareness and
shared decision making, allowing clinicians to tailor
care to context, foster relationships, and communicate
findings in ways that minimize misinterpretation.

Unlike EBM, ML has limited explanatory power: Al-
gorithms may identify many correlations between thou-
sands of variables, but these do not prove causation.
For example, intensive care admissions and inotropic
infusions are highly correlated with in-hospital mortal-
ity, but stopping either or both will not prevent deaths.
In EBM, randomized controlled trials demonstrate ther-
apeutic efficacy; they also prove that ML-derived risk
scores improve targeting of therapies to high-risk pa-
tients and yield better outcomes.
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Inability to see inside the “black box” of ML and
understand how it arrives at results, compared with the
transparency of EBM, worries clinicians (5). Even simple
algorithms may fail, such as the computerized electro-
cardiographic readouts that misinterpreted arrhythmias
(6). Opaque algorithms applied to insurance risk, em-
ployability, and other forms of social profiling have
generated false and harmful predictions (7). Clinical
care could incur the same problem, especially if clini-
cians lose skills by becoming overly reliant on auto-
mated algorithms (8). In an ML world, links between
implicit and explicit knowledge that allow clinicians to
imagine better ways of doing things may be lost among
algorithms that simply improve the efficiency of what
clinicians already do.

RECONCILING EBM WITH ML
Despite their differences, EBM and ML can assist

one another. Algorithms can facilitate more precise es-
timates of individual risk, with implications for choice
between diagnostic tests or therapies that can then be
compared in prospective, adaptive, randomized con-
trolled trials. Regression models shown to have supe-
rior performance in ML could be applied to clinical
studies that use traditional biostatistics. Mendelian ran-
domization and statistical analyses based on directed
acyclic graphs and different matching techniques may
help validate causal inferences based on ML associa-
tions (9). Clinical trials, enamored of EBM, can compare
ML-based interventions with usual care to assess their
feasibility and validity in routine care. Hybrid algorithms
are emerging that incorporate both methods and per-
form better than those based on 1 method alone (10).
For ML to achieve “prime time” clinical application, the
field needs to develop common nomenclatures, evalu-
ation and reporting standards, comparative analyses of
different algorithms, and training programs for clini-
cians; EBM has already traversed this path and can as-
sist ML in doing the same.
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EHR = electronic health record.
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